pydanclick¶
Use Pydantic models as Click options.
Getting started¶
Install:
pip install pydanclick
Let's assume you have a Pydantic model:
class TrainingConfig(BaseModel):
epochs: int
lr: Annotated[float, Field(gt=0)] = 1e-4
early_stopping: bool = False
Add all its fields as options in your Click command:
from pydanclick import from_pydantic
@click.command()
@from_pydantic(TrainingConfig)
def cli(training_config: TrainingConfig):
# Here, we receive an already validated Pydantic object.
click.echo(training_config.model_dump_json(indent=2))
~ python my_app.py --help
Usage: my_app.py [OPTIONS]
Options:
--early-stopping / --no-early-stopping
--lr FLOAT RANGE [x>0]
--epochs INTEGER [required]
--help Show this message and exit.
Keep reading:
- Take a tour of the Features below
- Read the Examples
- See the API Reference
Features¶
Use native Click types¶
The following types are converted to native Click types:
Pydantic type | Converted to |
---|---|
bool |
click.BOOL |
str |
click.STRING |
int |
click.INT |
float |
click.FLOAT |
Annotated[int, Field(lt=..., ge=...) |
click.IntRange() |
Annotated[float, Field(lt=..., ge=...) |
click.FloatRange() |
pathlib.Path |
click.Path() |
uuid.UUID |
click.UUID |
datetime.datetime , datetime.date |
click.DateTime() |
Literal |
click.Choice |
Complex container types such as lists or dicts are also supported: they must be passed as JSON strings, and will be validated through Pydantic TypeAdapter.validate_json
method:
--arg1 '[1, 2, 3]' --arg2 '{"a": bool, "b": false}'
In any case, Pydantic validation will run during model instantiation.
Add multiple models¶
pydanclick.from_pydantic
can be called several times with different models.
Use the prefix
parameter to namespace the options from different models:
class Foo(BaseModel):
a: str = ""
b: str = ""
class Bar(BaseModel):
x: int = 0
y: int = 0
@click.command()
@from_pydantic(Foo, prefix="foo")
@from_pydantic(Bar, prefix="bar")
def cli(foo: Foo, bar: Bar):
pass
will give:
~ python cli.py
Usage: cli.py [OPTIONS]
Options:
--foo-a TEXT
--foo-b TEXT
--bar-x INTEGER
--bar-y INTEGER
--help Show this message and exit.
Add regular options and arguments¶
pydanclick
can be used alongside regular options and arguments:
@click.command()
@click.argument("arg")
@click.option("--option")
@from_pydantic(Foo)
def cli(arg, option, foo: Foo):
pass
will give:
~ python cli.py
Usage: cli.py [OPTIONS] ARG
Options:
--option TEXT
--a TEXT
--b TEXT
--help Show this message and exit.
Specify a custom variable name for the instantiated model with the same syntax as a regular Click option:
@click.command()
@from_pydantic("some_name", Foo)
def cli(some_name: Foo):
pass
Document options¶
Options added with pydanclick.from_pydantic
will appear in the command help page.
From docstrings: if griffe
is installed, model docstring will be parsed and the Attributes section will be used to document options automatically (you can use pip install pydanclick[griffe]
to install it). Use docstring_tyle
to choose between google
, numpy
and sphinx
coding style. Disable docstring parsing by passing parse_docstring=False
.
From field description: pydanclick
supports the Field(description=...)
syntax from Pydantic. If specified, it will take precedence over the docstring description.
Explicitly: you can always specify a custom help string for a given field by using extra_options={"my_field": {"help": "my help string"}}
where my_field
is the name of your field.
Here are these three methods in action:
class Baz(BaseModel):
"""Some demo model.
Attributes:
a: this comes from the docstring (requires griffe)
"""
a: int = 0
b: Annotated[int, Field(description="this comes from the field description")] = 0
c: int = 0
@click.command()
@from_pydantic(Baz, extra_options={"c": {"help": "this comes from the `extra_options`"}})
def cli(baz: Baz):
pass
will give:
~ python cli.py --help
Usage: cli.py [OPTIONS]
Options:
--a INTEGER this comes from the docstring (requires griffe)
--b INTEGER this comes from the field description
--c INTEGER this comes from the `extra_options`
--help Show this message and exit.
Customize option names¶
Specify option names with rename
and short option names with shorten
:
@click.command()
@from_pydantic(Foo, rename={"a": "--alpha", "b": "--beta"}, shorten={"a": "-A", "b": "-B"})
def cli(foo: Foo):
pass
will give:
~ python cli.py --help
Usage: cli.py [OPTIONS]
Options:
-A, --alpha TEXT
-B, --beta TEXT
--help Show this message and exit.
Note that prefix
won't be prepended to option names passed with rename
or shorten
.
Pass extra parameters¶
Use extra_options
to pass extra parameters to click.option
for a given field.
For example, in the following code, the user will be prompted for the value of a
:
@click.command()
@from_pydantic(Foo, extra_options={"a": {"prompt": True}})
def cli(foo: Foo):
pass
Add nested models¶
Nested Pydantic models are supported, with arbitrary nesting level. Option names will be built by joining all parent names and the field names itself with dashes.
class Left(BaseModel):
x: int
class Right(BaseModel):
x: int
class Root(BaseModel):
left: Left
right: Right
x: int
@click.command()
@from_pydantic(Root)
def cli(root: Root):
pass
will give:
~ python cli.py --help
Usage: cli.py [OPTIONS]
Options:
--left-x INTEGER [required]
--right-x INTEGER [required]
--x INTEGER [required]
--help Show this message and exit.
To use rename
, shorten
, exclude
, extra_options
with a nested field, use its dotted name, e.g. left.x
or right.x
. Note that the alias of a field will apply to all its sub-fields:
@click.command()
@from_pydantic(Root, rename={"right": "--the-other-left"})
def cli(root: Root):
pass
will give:
~ python cli.py --help
Usage: cli.py [OPTIONS]
Options:
--left-x INTEGER [required]
--the-other-left-x INTEGER [required]
--x INTEGER [required]
--help Show this message and exit.
Unpacking (experimental)¶
Unpacking provides a simpler API when working with list of submodels.
Consider the following example:
class Author:
name: str
primary: bool = False
class Book:
title: str
authors: list[Author]
@click.command()
@from_pydantic(Book, unpack_list=True)
def cli(book: Book):
pass
By default, this would create two command-line arguments --title
and --authors
. Since authors
has a complex type, it should be passed as a JSON string (e.g. --authors '[{"authors": {"name": "Alice", "primary": true}, {"name": "Bob"}]'). Using
unpacked_listwill instead "unpack" the nested field
nameinto the main namespace: this new argument is called
--authors-name` and can be specified multiple time, for example:
python cli.py --authors-name Alice --authors-primary --authors-name Bob
would create:
Book(authors=[Author(name="Alice", primary=True), Author(name="Bob")])
Note that you must always specify objects with optional arguments before objects without them. For example, the following command would make Bob
the primary author, not Alice
:
python cli.py --authors-name Bob --authors-name Alice --authors-primary
(Why? Because under the hood, arguments are collected per field {"name": [Bob, Alice], "primary": [True]}
, and relative placement between fields cannot be accessed.)
When in doubt, you can simply specify all arguments:
python cli.py --authors-name Bob --no-authors-primary --authors-name Alice --authors-primary
This API is experimental and will not work in complex cases (deeply nested lists, lists of union, and much more). See issue #20 for context and details.
Limitations¶
pydanclick
doesn't support (yet!):
- Pydantic v1
- converting fields to arguments, instead of options
- fields annotated with union of Pydantic models can only be used with JSON inputs, instead of properly merging all sub-fields
- custom argument validators
Other missing features:
- Reading model from file
- Specifying all field-specific options directly in the Pydantic model (would allow easier reuse)
- Most Click features should be supported out-of-the-box through the
extra_options
parameter. However, most of them aren't tested - Click and Pydantic both include validation logic. In particular, Click support custom
ParamType
, validation callbacks andBadParameter
errors: it's not clear if we want to fully rely on Pydantic or on Click or on a mixture of both - populating Pydantic fields from existing options or arguments (combined with
exclude
, it will provide a complete escape hatch to bypass Pydantclick when needed) - attaching Pydanclick arguments directly to the model class, to avoid duplication when re-using a model in multiple commands